Article: Few-shot learning in industrial applications
| dc.audience | Researchers | en |
| dc.contributor.author | Molek, Vojtech | |
| dc.contributor.author | Alijani, Zahra | |
| dc.date.accessioned | 2026-02-06T11:29:30Z | |
| dc.date.available | 2026-02-06T11:29:30Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | This paper reports on the empirical performance of few-shot learning (FSL) for visual defect classification using confidential industrial datasets. We evaluate 16 combinations of four backbone models (Perception Encoder, DINOv2, DINOv3, ConvNeXt-v2) and four FSL classifiers (Prototypical Networks, Neighborhood Component Analysis, Relation Networks, Linear Adapter). The evaluation covers three conditions: a baseline comparison, deterministic support set augmentation, and a learnable attention preprocessor. Results demonstrate that support set augmentation is a highly effective strategy, improving performance in nearly all configurations. Furthermore, the DINOv2 and ConvNeXt-V2-T backbones emerged as top performers, achieving the most competitive and highest-accuracy results, respectively. These findings suggest that for industrial FSL applications, combining a strong, pre-trained backbone with a simple augmentation strategy is a practical approach for building data-efficient classification systems. | en |
| dc.description.sponsorship | The contribution has been funded from the project “Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22 008/0004583”, which is co-financed by the European Union. This article has been produced with the financial support of the European Union under the REFRESH – Research Excellence For REgion Sustainability and High-tech Industries project number CZ.10.03.01/00/22 003/0000048 via the Operational Programme Just Transition. | |
| dc.identifier.citation | MOLEK, Vojtech and ALIJANI, Zahra, 2026. Few-shot learning in industrial applications. Online. In: STUPŇANOVÁ, Andrea; DYBA, Martin and PAVLISKA, Viktor (eds.). Proceedings of The Eighteenth International Conference on Fuzzy Set Theory and Applications. Ostrava: University of Ostrava, p. 74-77. ISBN 978-80-7599-515-5. Available at: https://doi.org/10.15452/978-80-7599-515-5.2026.14. | en |
| dc.identifier.doi | 10.15452/978-80-7599-515-5.2026.14 | |
| dc.identifier.uri | https://eduo.osu.cz/handle/1/237 | |
| dc.language.iso | en | |
| dc.rights.license | CC BY 4.0 | |
| dc.subject | fuzzy systems | en |
| dc.subject | mathematics | en |
| dc.subject | informatics | en |
| dc.subject.czenas | fuzzy systémy | cz |
| dc.subject.czenas | matematika | cz |
| dc.subject.czenas | informatika | cz |
| dc.subject.konspekt | 519.1/.8 - Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování | cz |
| dc.title | Few-shot learning in industrial applications | en |
| dc.type | info:eu-repo/semantics/conferencePaper | |
| dcterms.event | The Eighteenth International Conference on Fuzzy Set Theory and Applications, Liptovský Ján, January 25 – 30, 2026 | |
| dspace.entity.type | Article | |
| oaire.resourceType | conference paper | |
| oaire.version | info:eu-repo/semantics/publishedVersion | |
| relation.isPublicationOfArticle | 6afab15b-8c40-42f9-a7ec-39737fc00100 | |
| relation.isPublicationOfArticle.latestForDiscovery | 6afab15b-8c40-42f9-a7ec-39737fc00100 |
Files
Original bundle
1 - 1 of 1