CC BY 4.0Alijani, ZahraDaňková, Martina2026-02-062026-02-062026ALIJANI, Zahra and DAŇKOVÁ, Martina, 2026. A General Framework for Context-Aware Fuzzification of Four Ordered Categories: A Case Study on BMI Categories. Online. In: ; STUPŇANOVÁ, Andrea and PAVLISKA, Viktor (eds.). Proceedings of The Eighteenth International Conference on Fuzzy Set Theory and Applications. Ostrava: University of Ostrava, p. 25-28. ISBN 978-80-7599-515-5. Available at: https://doi.org/10.15452/978-80-7599-515-5.2026.02.10.15452/978-80-7599-515-5.2026.02https://eduo.osu.cz/handle/1/225This paper presents a general methodological framework for constructing context-aware fuzzy partitions that extend conventional crisp categorizations. The approach is based on Nov´ak’s theory of fuzzy contexts and is implemented using the R package lfl. It enables smooth and interpretable transitions between adjacent classes while preserving the original categorical structure. To illustrate the procedure, we apply it to derive fitness-specific fuzzy partitions of Body Mass Index, where the conventional four categories (underweight, normal weight, overweight, obese) are adapted according to individual levels of cardiorespiratory fitness.enfuzzy systemsmathematicsinformaticsA General Framework for Context-Aware Fuzzification of Four Ordered Categories: A Case Study on BMI Categoriesinfo:eu-repo/semantics/conferencePaper519.1/.8 - Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelovánífuzzy systémymatematikainformatika